
PHYSICAL REVIEW E, VOLUME 63, 036131
Random walks on fractals and stretched exponential relaxation
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Stretched exponential relaxation@exp2(t/t)bK# is observed in a large variety of systems but has not been
explained so far. Studying random walks on percolation clusters in curved spaces whose dimensions range
from 2 to 7, we show that the relaxation is accurately a stretched exponential and is directly connected to the
fractal nature of these clusters. Thus we find that in each dimension the decay exponentbK is related to
well-known exponents of the percolation theory in the corresponding flat space. We suggest that the stretched
exponential behavior observed in many complex systems~polymers, colloids, glasses, . . . ) is due to thefractal
character of their configuration space.
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The stretched exponential decay function whose gen
form is q(t)5exp2(t/t)bK, was proposed empirically in
1854 by Kohlrausch@1# to parametrize the discharge of Le
den jars, and was rediscovered in 1970 by Williams a
Watts @2#. Since then the phenomenological ‘‘KWW’
~Kohlrausch, Williams, and Watts! expression has bee
shown to give an excellent representation of experime
and numerical relaxation data in a huge variety of comp
systems, including polymers, colloids, glasses, spin glas
and many more. This behavior has attracted considerable
riosity; it has been discussed principally in terms of mod
where individual elements relax independently with an
propriate wide distribution of relaxation times~see, for in-
stance,@3–6#!. However, despite the ubiquity of the KWW
expression, in the view of many scientists its status rema
that of a convenient but mysterious phenomenological
proximation having no fundamental physical justification.

Here we demonstrate that, on the contrary, KWW is
fact abona fideand respectable relaxation function; exac
this form of relaxation appears naturally when we consi
random walks on fractal structures in closed spaces of g
eral dimensions. We suggest that the physical significanc
the relaxation behavior in numerous complex systems sh
be reconsidered in the light of this result.

For random walks on fractal clusters in Euclidean~flat!
spaces, it is well known that ifr (t) is the distance of the
walker from the starting point after timet, then ^r 2(t)&
}t2/21u5tbRW @7,8#. HerebRW5d̃/D, whered̃ andD are the
spectral and fractal dimensions of the cluster, respectiv
For a critical percolation fractal,u5(m2b)/n, wherem, b,
and n are universal percolation critical exponents@7,8#
whose numerical values are known quite accurately in
dimensions@9–14#.

For random walks on the surface of a sphere, which
closed surface, the local behavior^r 2(t)&}t can be shown to
lead exactly to an exponential decay of the autocorrela
^cos@u(t)#&}exp(2t/t), where u(t) is the angle between
the initial t50 position vector of the walker and the positio
vector at time t. With an appropriate definition o
^cos@u(t)#& this result holds for hyperspheres in any dime
sion. For random walks on a percolation fractal inscribed
1063-651X/2001/63~3!/036131~4!/$15.00 63 0361
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a closedspace with the topology of a hypersphere, it w
conjectured some years ago that the end-to-end autocor
tion function should decay as a KWW stretched exponent
with the Kohlrausch exponentbK equal to the flat space
percolation fractal random walk exponent, i.e.,bK5bRW in
any space dimension@15,16#. This can be understood simpl
in terms of a ‘‘fractal’’ timetRW

b replacingt in both the local
^r 2(t)& and the exponential̂cos@u(t)#& expressions above
This conjecture has been extensively tested numerically
only in the extreme case of the very-high-dimensional hyp
cube @16,17,18# ~the hypercube has the same closed sp
topology as a hypersphere!. In the present work we have
studied numerically the general case of random walks
percolation clusters on hyperspherical surfaces for the ra
of different embedding dimensionsd running from 3 to 8.

The simplest case to visualize is the surface of a spher
dimensiond53. The surface is decorated with small dis
whose centers are distributed at random. Several clus
made of overlapping disks, can be determined. The larg
cluster contains more and more disks as the total numbe
disks is increased. Just as there appears a percolation cl
~containing a noninfinitesimal fraction of the total number
disks! for the equivalent system in the two-dimensional fl
space above a critical value of disk concentration, so
largest cluster ‘‘percolates’’ on the surface of the sph
when the number of disks is sufficiently large. As an illu
tration, in Fig. 1, we have represented the two-dimensio
projection of the percolating cluster in the cased/R50.01
~whered is the disk diameter andR the sphere radius!. Here
Np5179 200 disks have been disposed at random; only
largest cluster, containing 38 130 disks, is represented. N
that this cluster spans almost a hemisphere, a situation in
mediate between a well localized cluster (N!Np) and a
cluster spanning uniformly the whole surface of the sph
(N@Np).

The position of a given disk center can be defined by
d53 coordinatesxi , where the origin is taken as the cent
of the sphere. Imagine now a walker jumping at rando
from one disk center to the center of any disk overlapping
While the values of the coordinates averaged over m
walks ^xi(t)& stay finite forN!Np ~the walker is localized!
they decay exponentially to zero forN@Np , finally losing
©2001 The American Physical Society31-1
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memory of their initial values. Of course, in the limitN
@Np , ^xi(t)& goes to zero since the random walker starts
investigate the largest cluster~which fills uniformly the
curved space! entirely. Our calculations show that right a
the percolation where the largest cluster is fractal, the de
is critical, and takes up precisely the stretched exponen
form, with abK exponent equal tobRW, already known for
the random walk on a percolating cluster in a tw
dimensional flat space. Our calculation is the generaliza
of this picture over a wide range of dimensions, in particu
for dimensions larger thann56, where it is known thatbRW
reaches its mean-field value 1/3.

Consider the surface of ad-dimensional~hyper!sphere of
unit radius which can be defined, using Euclidean coo
nates, by( i 50

d xi
251. This ~hyper!surface is a closed an

curved n-dimensional (n5d21) space,Sn , on which one
can define a geodesic distance between two points~1! and~2!
by u5cos21q, whereq is the scalar product of the end pos
tions, i.e.,q5r1•r25( i 50

d xi
(1)xi

(2) . Of course, this distance
becomes asymptotically equivalent to the Euclidean dista
in the limit of distances infinitesimally small compared to t
radius of the~hyper!sphere~which is here set to unity!. On
this n-dimensional~hyper!surface, identicaln-dimensional
small~hyper!disks~called disks in the following! of diameter
d!1 are disposed sequentially, the successive disk cen
being chosen at random uniformly onSn . To determine the
cluster structure, as soon as a new disk is added, a searc
connections with previous disks is performed by checking
their center-to-center geodesic distance is smaller thand. At
each stage, whenN disks have been disposed onSn , we can
define and label the different clusters made up of conne
disks. In particular, one can determine the largest clu

FIG. 1. Two-dimensional projection of a typical percolatin
cluster of disks of diameterd50.01 on the surface of a sphere
unit radius. HereNp5179 200 disks have been disposed at rando
only the largest cluster, containingNm538 130 disks, is repre-
sented.
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containing the greatest numberNm of disks. Also one can
characterize the overall filling of the space by a dimensi
less parameterh, the ratio between the sum of the area of t
individual disks, and the total area ofSn @19#. Note that this
filling parameter is larger than the true volume fractionc,
because of multiple counting due to overlaps, and there
h can eventually exceed unity. More precisely, it has be
shown thatc512exp(2h) @20,21#. Percolation occurs forh
larger than a threshold valuehp above whichP5Nm /N,
which measures the probability for a given disk to belong
the largest cluster, remains nonzero in the thermodyna
limit d→0. In practice the curveP(h) exhibits a sigmoı¨dal
shape which becomes sharper and sharper athp asd→0.

Once the largest cluster has been identified, we cho
one of its constitutive disk centersr (0) at random as a start
ing point. We perform a random walk on the cluster by p
forming successive jumps, first fromr (0) to the centerr (1)
of any other disk connected to it~chosen at random over a
its overlapping disks!, then iterating fromr (1) to r (2), etc.
@20#. After t steps, the ‘‘correlation function’’r (0)•r (t) is
calculated. This is the scalar product of the two end po
tions, which is no more than the cosine of the geodesic e
to-end distanceu measured onSn . In practice we calculate
the quantityq(t)5^cosu& which has been averaged, for
given number of stepst, overNr independent realizations o
the largest cluster as well as overNs independent choices o
the starting point on each cluster. Given dimensionn and
sized, the behavior ofq(t) has been analyzed for differen
filling valuesh.

An example withn53 andd50.02 is shown in Fig. 2,
where2 lnuq(t)u has been plotted as a function oft in a log-

;

FIG. 2. Plot of 2 lnuq(t)u versust ~averaged overNr520 and
Ns510 500) forn53, d50.02, and for differenth values: from
bottom to toph50.335, 0.34, 03452, 0.35, 0.355~the statistical
error bars do not exceed the thickness of the lines!. In the inset the
local value of the exponentb is plotted as a function of lnt for the
different h values in order to estimatehp andbK .
1-2
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log plot, after taking an average over independent wa
starting fromNs510 500 different disks on each of theNr

520 independently generated largest clusters~a typical value
of the number of disks in the percolating cluster isNm

.700 000). If the relaxation functionq(t) is strictly a
stretched exponential, this type of plot produces a stra
line of slope bK . For the critical value ofh ~here hp

.0.3452), one observes a clear straight line behavior in
numerical data over~at least! six decades int ~the walk for
hp has been extended to illustrate this point!. In the inset we
show how we estimatehp andbK . The effective slope of the
log-log plot has been determined by a least-squares fit wi
an interval of one-tenth of the total range in lnt and plotted
as a function of lnt. The percolation thresholdhp is esti-
mated as theh value giving the widest plateau at large time
and thebK exponent is taken as this plateau value. T
procedure has been repeated for different values ofd and for
dimensionsn ranging from 2 to 7~for n51 it is well known
that the percolation transition does not occur@11#!. The low-
est attainabled values are mainly determined by the limite
memory of our computers. In practice the values ofNs have
been chosen to be of the order of 2% ofNm , andNr has been
chosen so as to obtain runs of the order of a day on reg
high speed personal computers.Ns varies from a few thou-
sands to a few units when decreasingd from about 0.3 to its
lowest attainabled value. This protocol leads to error bars
the order of 0.01 for the exponent estimates. Of course
‘‘true’’ values of the percolation thresholds and expone
are obtained by an extrapolation to the ‘‘thermodynami
limit d→0.

The numerical results forhp in n52 and 3 are in excel-
lent agreement with accurate estimates from flat space ca
lations @18,19#, andhp drops quasiexponentially withn for
higher dimensions. The data forbK are summarized in Fig
3, wherebK has been plotted as a function ofd. On thed
50 axis of Fig. 3, we have indicated the best estimates of
flat spacebRW with their associated error bars, calculat
from recentm, b, and n values available in the literatur
@9–14#. We note that for alln>6, bRW51/3 exactly, since
n56 is the upper critical dimension for percolation@11#. It is
quite remarkable that for each dimensionn, a simple straight
line fit of our data goes through the correspondingbRW value
to within the numerical error or, at least, extrapolates to
value very close to it.

It should be noticed that the laŵcosu&}exp2(t/t)bK not
only contains the large time relaxation behavior but also
short-time behavior as, after expanding both sides for smt
and u, it becomeŝ u2&}(t/t)bK. Since for short times the
random walker stays on ann-dimensional surface tangent t
the ~hyper!sphere, one recovers the law^r 2&}tbRW in dimen-
sionn. This could explain why the stretched exponential b
havior extends over so large a region of time~see Fig. 2!. In
practice, as in flat space, at very short times there are co
tions to scaling due to the discrete character of the walk

These data can be taken as a clear numerical demon
tion that random walks on a fractal cluster inscribed on
hypersphere in any dimension lead necessarily to a stret
exponential decay of the correlation function, with a Koh
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rausch exponentbK equal to the ratiod̃/D of the spectral and
fractal dimensions of the cluster. Thus the stretched ex
nential relaxation on a fractal in a closed space appears a
precise analog of the sublinear diffusion on a fractal in a
space.

Why is this relevant to relaxation in complex systems?
complex system is made up of many individual eleme
~atoms, molecules, spins, etc.!, all in interaction with each
other. The total space of all possible configurations of
whole system is a huge closed space having a very h
dimension of the order of the number of elements. Th
spaces are so astronomically large that an explicit evalua
of their properties, configuration by configuration, is almo
impossible except for tiny systems. Each configuration
an energy associated to it. At finite temperatureT only a
restricted subset of configurations are of low enough ene
to be thermodynamically accessible by the system. In eq
librium at T above any ordering temperature, the system
permanently exploring all this subset of accessible confi
rations by successive movements or reorientations of lo
elements of the total system. By definition this equilibriu
relaxation can be mapped onto a random walk of the po
representing the instantaneous configuration of the total
tem within the space of accessible configurations. Thus
configuration space of a complex system can be viewed
‘‘rough landscape.’’ In such a scenario, the portion of co
figuration space available to the system consists of onl
restricted set of tortuous configuration-space paths. In
situation, when real measurements are made, the obse
relaxation functions must reflect the complex morphology
the available configuration space, and so will be slow a
nonexponential—typically stretched exponential. Now, a

FIG. 3. Variation of the exponentbK as a function of the~hy-
per!disk diameterd for dimensionn52,3,4,5,6, and 7~from top to
bottom!. The solid lines represent least-squares linear fits of
data points. The best estimates of the flat space exponentbRW with
their associated error bars@9–14# are represented by the stars on t
y axis.
1-3
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relaxation function including the KWW function can be re
resented as the sum of an appropriate distribution of elem
tary exponential relaxations. However, it is important to n
that the independent exponentially relaxing elements i
complex system are themodesof the whole system, not the
atoms, molecules, or spins which are in strong interac
with each other@22#. It is the morphology of the configura
tion space which determines the mode distribution and
form of the relaxation.

We have just seen that a closed space fractal struc
necessarily leads to a relaxation process which is exactl
stretched exponential type; we suggest that, inversely, w
a complex system at temperatureT is actually observed to
relax with a stretched exponential, it is the signature o
fractal morphology of the available configuration space
that temperature. In particular, whatever the microscopic
oe

on

B
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tails of the interactions in a glass former are, it is genera
observed that as the glass temperature is approached
above, KWW relaxation sets in. The implication is that pha
space takes up a fractal morphology as a consequence o
intrinsic complexity associated with glassiness. The image
the glass transition which follows is that of a percolati
transition in phase space@15,22# with the temperature being
analog to the filling parameter. As would be expected fro
the argument given above, the Kohlrausch exponent is
served to tend to a limiting value of 1/3 as the glass tran
tion is approached in a number of systems, Refs.@23–26# for
instance.

In summary, we have demonstrated that random walks
fractals in closed spaces give stretched exponential re
ation, and we suggest that stretched exponential relaxatio
ubiquitous in nature because configuration spaces are fra
in many complex systems.
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